考研高数重点解析:微分方程与无穷级数

2013年07月18日16:15  跨考教育 微博   

  “世事洞明皆学问”。想把一件事做好,就需要用心揣摩其规律、总结其方法。考研[微博]复习亦不例外:除了结合考纲把基础打牢,还需适当总结方法、关注重点。针对考生需求,跨考教研中心数学教研室精心准备了2014年暑期考研数学复习重点解析。以下是高数微分方程与无穷级数部分,供参考。

  一、微分方程

  微分方程可视为一元函数微积分学的应用与推广。该部分在考试中以大题与小题的形式交替出现,平均每年所占分值在8分左右。常考的题型包括各种类型微分方程的求解,线性微分方程解的性质,综合应用。

  对于该部分内容的复习,考生首先要能识别各种方程类型(一阶:可分离变量的方程、齐次方程、一阶线性方程、伯努利方程(数一、二)、全微分方程(数一);高阶:线性方程、欧拉方程(数一)、高阶可降阶的方程(数一、二)),熟悉其求解步骤,并通过足量练习以求熟练掌握;在此基础上还要具备数学建模的能力——能根据几何或物理背景,建立微分方程。

  另外,有几点需提醒考生:

  1. 解微分方程主要考查考生计算积分的能力,而实际应用则对考生的综合能力提出较高要求,考生需结合练习把“解方程”和“列方程”的能力练好。

  2. 非基本类型的方程一般都可通过变量替换化为基本类型。

  3. 考生需弄清常见的物理量、几何量与微分、积分的关系。

  二、无穷级数

  级数可视为微积分的综合应用。该部分是数一、数三的必考内容,分值约占10%。常考的题型有:常数项级数的收敛性,幂级数的收敛半径和收敛域,幂级数展开,幂级数求和,常数项级数求和以及傅里叶级数。其中幂级数是重点。

  结合考试分析,建议考生从以下方面把握该部分内容:

  1. 常数项级数

  理解其收敛的相关概念并掌握各种收敛性判别法。

  2. 幂级数

  考试有三方面的要求:幂级数收敛域的计算,幂级数求和,幂级数展开。考生应通过一定量训练使自己具备这三方面的能力——给定幂级数,准确计算其收敛半径进而得到收敛域,能求其和函数,能将一个简单函数在指定点展开成幂级数。

  3.傅里叶级数

  考试出现频率和考试要求均较低,掌握傅里叶系数的求法,再了解狄利克雷定理的内容即可。

  如何有效地复习考研数学?如果我们也视其为一道数学题,我想我们应该明白:我们要做微分运算——拿着放大镜把每个考点弄清,也要做积分运算——持续地投入,积跬步以至千里;我们要有严谨的态度——一张数表里有一个数不同结果就变了,还要有灵活的思维——于点、线、面,数、表、空间,常量、变量、随机变量间自由游弋;面对逝去的光阴不要悔恨——函数都可以不单调,人却要让过去决定未来吗,面对不如意的现状要接纳——作为考生,我们无权更改微分方程的初始条件,我们能做的是接受它,把题漂亮地解出来。

  文章来源:跨考考研

分享到:

    更多信息请访问:新浪考研频道 新浪考研官方微博

  特别说明:由于各方面情况的不断调整与变化,新浪网所提供的所有考试信息仅供参考,敬请考生以权威部门公布的正式信息为准。

意见反馈 电话:010-62675178保存  |  打印  |  关闭

高考院校库

(共有2462所高校高招分数线信息)
院校搜索:
高校分数线:
批次控制线:
估分择校:
试题查询:
猜你喜欢

看过本文的人还看过