考研数学如何复习:点线面全方位出击

2017年08月10日 15:31 文都教育
微博 微信 空间 分享 添加喜爱

  数学是考研的一大难题,越到后期越是崩溃,所以前期基础很重要,高层建筑的质量由基础决定,基础的夯实才是继续提升的基础。如何才能打好基础?文都教育给大家分享一个点、线、面三大学习法全面结合起来的综合方案,为你的后期强化冲刺垫好基础!

  1、点式学习

  数学知识由一系列的基本定义、基本定理、基本方法组成,这些基本的知识点两两结合,三两结合就能构成不同难度,不同层次的考题,但追根究底,若没有对这些小知识点透彻的学习是不可能漂亮求解复杂问题的。所谓“不积跬步无以至千里”就是道理所在。如何才能深刻理解这些知识点的内涵呢?

  一般也需要分三步:一、这个点在讲什么?二、这个点揭示了什么?三、这个点如何使用?例如,中值定理里有一个拉格朗日中值定理,从以上三个层次理解就是:一、讲切线与两端点连线的问题;二、揭示了导数与函数的内在关系;三、可以用来沟通函数与导数,出现在不等式证明及中值定理证明题目中。

  2、线式学习

  在掌握好第一步单个知识点的学习后,就好比我们手里有有一把珠子,要想便于携带需要把这些散珠穿起来,这就是线式学习。那么这条穿珠子的线是什么呢?我认为应该是各章节之间的联系。至于如何找到这条线,其实不难,大家手头的教材的编排都是按照一定的逻辑关系进行的,我们只需深刻理解教材的编排方式就可以将珠子穿起来了。当然,每个人的水平又是不同的,有人理解的深刻,有人理解就浅见一些,不过,只要多下功夫,“读书百遍,其意自现”。

  3、面式学习

  过线式学习,我们已经把知识做成了一根根线,现在需要把这些线织起来。线与线之间的联系就需要站高一些来看了,各个章节是要解决什么问题,综合起来又是要解决什么问题,这需要较高的抽象综合能力,分析问题的能力。

  例如,从整体上看高等数学,首先研究函数极限连续,那这是在说明高等数学研究的对象及使用的工具,以极限的手段研究连续函数;后续研究导数及其应用以及中值定理,这是进入一元函数微分学的,一元函数微分学学清楚了后边多元微分的学习就可以轻松进入,对比学习即可;再者就是一元函数积分学的学习,这是整个积分学的基础,后续多元的积分学,包括二重积分、三重积分、曲线面积分从本质上说要想计算出来都要转化成一元函数的积分来处理等。

  更多信息请访问:新浪考研频道 新浪考研官方微博

高考志愿通(收录2595所大学、506个专业分数线信息、提供29省专家服务)

三步报志愿

1
专业定位
适合专业测评
47021人已测试
2
海选学校
录取可能性报告
100132人已测试

分数线查询

北京

  • 北京
  • 天津
  • 上海
  • 重庆
  • 河北
  • 河南
  • 山东
  • 山西
  • 安徽
  • 江西
  • 江苏
  • 浙江
  • 湖北
  • 湖南
  • 广东
  • 广西
  • 云南
  • 贵州
  • 四川
  • 陕西
  • 青海
  • 宁夏
  • 黑龙江
  • 吉林
  • 辽宁
  • 西藏
  • 新疆
  • 内蒙古
  • 海南
  • 福建
  • 甘肃
  • 港澳台

2015

  • 2015
  • 2014
  • 2013
  • 2012
  • 2011

北京

  • 北京
  • 天津
  • 上海
  • 重庆
  • 河北
  • 河南
  • 山东
  • 山西
  • 安徽
  • 江西
  • 江苏
  • 浙江
  • 湖北
  • 湖南
  • 广东
  • 广西
  • 云南
  • 贵州
  • 四川
  • 陕西
  • 青海
  • 宁夏
  • 黑龙江
  • 吉林
  • 辽宁
  • 西藏
  • 新疆
  • 内蒙古
  • 海南
  • 福建
  • 甘肃
  • 港澳台

理科

  • 文科
  • 理科

找专家报志愿

一对一服务
咨询电话:
01058983379
推荐阅读
聚焦
关闭评论
高清美图