公务员考试数学运算备考要点:牛吃草

2013年11月11日14:47  华图公务员 微博   

  牛吃草问题又称为消长问题或牛顿牧场,是公考[微博]中常见的一种数学运算类题型,牛吃草问题属于工程问题的一种,是17世纪英国伟大的科学家牛顿提出来的,常见于小学奥数,其解决方法并不复杂,只是不太容易理解。下面华图教育[微博]专家从一般工程问题的角度讲解下牛吃草问题的解决方法。

  典型牛吃草问题的条件是假设草的生长速度固定不变,不同头数的牛吃光同一片草地所需的天数各不相同,求若干头牛吃这片草地可以吃多少天。由于吃的天数不同,草又是天天在生长的,所以草的存量随牛吃的天数不断地变化。下面就一道简单的例题说明一下此类题型的解法。

  【例】牧场上有一片青草,牛每天吃草,草每天以均匀的速度生长。这片青草供给10头牛可以吃20天,供给15头牛吃,可以吃10天。供给25头牛吃,可以吃多少天?(   )

  A.6            

  B.5          C.4             D.3

  解析:此类题型关键就在于每天草的增长量,如果忽略草的增长不计的话,则转化为一般工程问题,只需用工作总量=工作效率x时间即可。因此,我们就想办法把草每天的增长量给抵消掉。

  在第一种情况下,即10头牛吃20天时,我们把10 头牛分为两群,假设一群为x头,一群为10-x头,我们安排这x头牛每天专门负责吃生长出来的草量,则剩下10-x头牛每天的吃草量就是牧场每天草得减少量。因此,要求牧场的草可供10头牛吃20天也就相当于计算牧场的原草量可供10-x头牛吃20天。设原草量为y,即可得:y=(10-x)*20。同理可得,y=(15-x)*10。两个方程联立即可求出x,y。

  这里,x不太好理解,我们可以把他理解为每天草长量相当于x头牛的吃草量,这样即可得到牛吃草问题的解题公式:草地原有草量=(牛数-每天长草量)´天数

  牛吃草问题的解题公式在公考中间的应用十分广泛,基本上所有的消长问题都可以直接套用,所谓消长问题,即有两个量在同时变动,一个增加一个减少,两个方向不同一的情况。如,牛吃草中,牛吃草使草得增长量在减少,但是,草生长却使草量增加。

  下面我们看看公考中的真题:

  【江苏2009】有一池泉水,泉底均匀不断的涌出泉水,如果用8台抽水机10小时能把全池的水抽干,或者用12台抽水机6小时能把全池的水抽干。如果用14台抽水机把全池水抽干则需要的时间是(   )

  A.5小时          B.4小时         C.3小时         D.5.5小时

  解析:此题明显是消长问题,泉底和抽水机分别使池中泉水增加和减少。因此,可套牛吃草公式,此题中,抽水机就相当于牛,泉底涌水就相当于草在生长。故可得:y=(8-x)*10  y=(12-x)*6,解方程可得:x=2,y=60,则14台抽水机要抽干泉池的水要用60÷(14-2)=5小时。

  消长问题是公考中比较复杂的题型,没有正确的方法做起来无从下手,而行测考试对做题时间的要求又比较高,因此,希望广大考生能熟记公式,灵活使用,在考试中取得好成绩。

分享到:

    更多信息请访问:新浪公务员频道 公务员职位库

  特别说明:由于各方面情况的不断调整与变化,新浪网所提供的所有考试信息仅供参考,敬请考生以权威部门公布的正式信息为准。

意见反馈 电话:010-62675178保存  |  打印  |  关闭

高考院校库

(共有2462所高校高招分数线信息)
院校搜索:
高校分数线:
批次控制线:
估分择校:
试题查询:
猜你喜欢

看过本文的人还看过