|
|
高三数学复习:函数的单调性具体复习指导http://www.sina.com.cn
2007年11月09日 09:44 城市快报
天津四中 李程 知识要点: 1.函数单调性的定义: 设函数f(x)在定义域的某个区间D上,若对于任意x1,x2∈D,当x1f(x2)),则函数f(x)在区间D上为增(减)函数。 定义的变形: (1)设任意x1,x2∈D, ->0←→f(x)在D上是增函数。 (2)设任意x1,x2∈D,(x1-x2)·[f(x1)-f(x2)]>0←→f(x)在D上是增函数。 2.判断函数单调性的常用方法: (1)证明一个函数的单调性的方法:定义法,导数法; (2)判断一个函数的单调性的常用方法:定义法,导数法,图象法,化归常见函数法,运用复合函数单调性规律。 3.常用复合函数单调性规律: (1)若函数f(x),g(x)在区间D上均为增(减)函数,则函数f(x)+g(x)在区间D上仍为增(减)函数。 (2)若函数f(x)在区间D上为增(减)函数,则函数-f(x)在区间D上为减(增)函数。 (3)复合函数f[g(x)]的单调性的判断分两步:Ⅰ考虑函数f[g(x)]的定义域;Ⅱ利用内层函数t=g(x)和外层函数y=f(t)确定函数f[g(x)]的单调性,法则是“同增异减”,即内外函数单调性相同时为增函数,内外层函数单调性相反时为减函数。典型例题: 例1:确定下列函数的单调区间: (1)y=x2-3x+- 解:x∈R (x--)2-2(x0) (x+-)2-2(x<0) 由二次函数图象可知y在(-∞,--)和(0,-)上为减函数,在(--,0)和(-,+∞)上为减函数。 说明:利用绝对值的意义,分类去掉绝对值化归为常见函数是解题的关键。注意当一个函数在多个区间上具有相同的单调性时,这多个区间之间不能使用“或”以及“∪”。 特别说明:由于各方面情况的不断调整与变化,新浪网所提供的所有考试信息仅供参考,敬请考生以权威部门公布的正式信息为准。
【发表评论 】
不支持Flash
|