|
|
08高考数学复习:平面向量解题要点与实际应用http://www.sina.com.cn
2008年01月31日 10:07 每日新报
我给学生提出了“三大线索,两大技巧”的复习重点。三大线索即:向量形式、坐标形式、几何意义。两大技巧为:抓“基底”、升次数。 天津一中 贾鲁津 平面向量这一章内容本身兼有代数、几何双重特点,而又完全有别于学生多年来数学学习中所接触到的代数运算和几何证明,因此,多数同学对本章问题感到既抓不住重点,也找不到规律,因此很困惑,甚者发憷。比较近几年数学高考试卷中的平面向量题目,不难发现其中的几个突出变化: 1.相关知识点覆盖面越来越全;2.与其他章节知识的交汇越来越多样,也越来越深入;3.题目所在档次有所提高,拿到相关分数的难度越来越大。如此,就增加了学生备考的难度。在顺利完成基本概念和基本运算复习的基础上,我给学生提出了“三大线索,两大技巧”的复习重点。三大线索即:向量形式、坐标形式、几何意义。两大技巧为:抓“基底”、升次数。下面就以向量与其他章节的综合为主线,和同学们一起回顾一下主要内容及其应用。 一、基本计算类: 1.已知-=(1,2),-=(-3,2),若(k-+-)⊥(--3-)则k=_______, 若(k-+-)//(--3-),则k=____ 答案:19,--。公式基本应用,无需解释。 2.已知向量-=(cos,sin),向量-=(2-,-1)则|3---|的最大值为 解:(3a-b)2=(3cosθ-2-, 3sinθ+1) (3cosθ-2-, 3sinθ+1) =(3cosθ-2-) 2+(3sinθ+1)2 =9cos2θ-12-cosθ+8+9sin2θ+1+6sinθ =18+6sinθ-12-cosθ ≤18+-=18+18=36 ∴|3a-b|max=6 点评:本题虽然是道小的综合题,但是向量中的升次技巧还是十分突出的,“见模平方”已是很多老师介绍给同学的一大法宝。不过升次的另外一种途径,就是同时点乘向量。 二、向量与三角知识综合: 3.设-=(1+cos,sin),-=(1-cos,sin),-=(1,0),∈(0,),∈(,2)-,-的夹角为θ1,-,-的夹角为θ2,且θ1-θ2=-,求sin-的值。 解:-·■=1+cos -·■=1-cos |-|2=2+2cos=4cos2- |-|2=2-2cos=4sin2- |-|=1 ∵-∈(0,- ) -∈(-,) ∴|-|=2cos- |-|=2sin- 又-·■=|-| |-|cosθ1 ∴1+cos=2cos-cosθ1 2cos2-=2cos-·cosθ1 ∴cosθ1=cos- ∴θ1=- 同理-·■=|-| |-|cosθ2 ∴sin-=cosθ2 ∴cos(---)=cosθ2 ∴---=θ2 ∴θ1-θ2=-+-=- ∴-=-- ∴sin-=-- 三、向量与函数、不等式知识综合: 4.已知平面向量-=(-,1), -=(-,-),若存在不同时为零的实数k,t,使-=-+(t2-3)-,-=-k-+t-,且-⊥-.(1)试求函数关系式k=f(t);(2)求使f(t)>0的t的取值范围. 解:(1)由题知-·■=0,|-|2=4 |-|2=1 -·■=-k-2+t-·■+t(t3-3)-2-k(t2-3)-·■=-4k+t(t2-3)=0 ∴k=-(t3-3t)即f(t)=-(t3-3t) (2)f’(t)=-(3t2-3)=-(t2-1) - 令f(t)=0 ∴t1=0 t2=-- t3=- 由图可知 t∈(--,0)∪(-,+∞) 四、用向量的知识解决三角形四边形中的问题。(与平面几何的交汇是近几年考试的热点) 温馨提示:据以下问题,同学们可以归纳一些常见结论,如与内心、外心、垂心、重心、中线、角分线、高线、共线、垂直等相关的结论。 5.O是平面上一定点,A、B、C是平面上不共线的三个点,动点P满足 -=-+(-+-)·∈(0,+∞)。则P的轨迹一定通过△ABC的( ) A.外心 B.内心 C.重心 D.垂心 答案:B 6.设平面内有四个互异的点A,B,C,D,已知(---)与(-+--2-)的内积等于零,则△ABC的形状为( ) (A)直角三角形 (B)等腰三角形 (C)等腰直角三角形 (D)等边三角形 特别说明:由于各方面情况的不断调整与变化,新浪网所提供的所有考试信息仅供参考,敬请考生以权威部门公布的正式信息为准。
【发表评论 】
不支持Flash
|