2017国考行测技巧:利用整除来解题

2016年11月03日 09:53 中公教育
微博 微信 空间 分享 添加喜爱

  在以往的国考家公务员考试中,不少考生在考场上放弃数量关系,主要觉得题目难,计算量也大。其实,只要采取一些解题技巧是能够快速而准确地解决相关问题的,其中整除思想是一个运用比较广泛的方法,也就是利用数的一些整除特性快速解决一些比较复杂的题目,能够节省很多时间,所以这部分知识需要好好掌握,中公教育专家在此进行详解。

  一、整除思想的应用环境

  1、文字描述出现“每”、“平均”、“倍数”等字眼可以考虑整除思想。

  例如题干条件为“把若干苹果平均分给5只猴子,正好分完”,那这时候我们就应该从平均中读出这堆苹果总数可以被5整除。

  2、数据出现“分数”、“百分数”、“比例”、“小数”这些形式时考虑整除思想。

  例如题干条件为“第二堆大米占所有大米的8分之一”,只此一句话我们就可以推断总共的大米袋数一定能被8整除。大家需要注意不管是比例、分数、百分数还是小数,他们之间是可以相互转化的,所以原理也是一样的,但是注意一定要化成最简比例。

  3、题干中出现一些相对难算的式子

  例如17×99+137×999+1357×9999,很明显结果能被9整除。

  二、常用小数字的整除判定

  1、局部看

  (1)一个数的末一位能被2或5整除,这个数就能被2或5整除;

  例:422末一位能被2整除,不能被5整除,所以422能被2整除,不能被5整除。

  (2)一个数的末两位能被4或25整除,这个数就能被4或25整除;

  例:560末两位能被4整除,不能被25整除,所以560能被4整除,不能被25整除。

  (3)一个数的末三位能被8或125整除,这个数就能被8或125整除;

  例:1200末三位能被8整除,不能被125整除,所以1200能被8整除,不能被125整除。

  2、整体看

  (1)3,9

  一个数各位数数字和能被3或9整除,这个数就能被3或9整除。

  此外,判定一个数能否被3或9整除,可以用到“弃3”或“弃9”法,即遇到和能被3或9整除的几个数字可以弃掉。

  例:判断37921能否被3整除,3、9弃掉,7+2=9,所以7和2也要弃掉,就剩下1,不能被3整除,所以37921不能被3整除。

  (2)7,11,13

  ①7:把个位数字截去,再从余下的数中减去个位数的2倍,差是7的倍数,则原数能被7整除。

  例:152,15-2×2=11,不能被7整除。

  ②11:奇数位上数字和与偶数位上数字和之差能被11整除。

  例:937,9+7-3=13,不能被11整除。

  ③13:逐次去掉最后一个数字并加上末尾数字的4倍能被13整除。

  例:364,36+4×4=52,能被13整除。

  3、其他合数

  将该合数进行因式分解,能同时被分解后的互质因数整除,则能被该合数整除。

  例:判定168能否被24整除,把24分解为质因数乘积的形式,24=3×8,168能同时被3和8整除,所以168能被24整除。

  三、例题讲解

  例:某粮库里有三堆袋装大米,已知第一堆有303袋大米,第二堆有全部大米袋数的五分之一,第三堆有全部大米袋数的七分之若干。问粮库里共有多少袋大米?

  A.2585          B.3535          C.3825          D.4115

  答案:B。

  [中公解析]这道题如果用其他的方法可能很难快速得出答案,显然用整除思想就很快解决问题,因为总的大米袋数一定可以被5和7整数,所以说,只有B选项符合。

  通过上面的学习,中公教育专家相信广大考生对于整除这种思想有了一定程度的掌握,灵活运用整除思想,势必会在做数量关系题目时带来很大便利。考生们要牢记整除思想的应用环境,培养利用整除思想解题的意识,相信会让大家有所收获,预祝各位考生在公考之路上一帆风顺!

高考志愿通(收录2595所大学、506个专业分数线信息、提供29省专家服务)

三步报志愿

1
专业定位
适合专业测评
42682人已测试
2
海选学校
录取可能性报告
87804人已测试

分数线查询

北京

  • 北京
  • 天津
  • 上海
  • 重庆
  • 河北
  • 河南
  • 山东
  • 山西
  • 安徽
  • 江西
  • 江苏
  • 浙江
  • 湖北
  • 湖南
  • 广东
  • 广西
  • 云南
  • 贵州
  • 四川
  • 陕西
  • 青海
  • 宁夏
  • 黑龙江
  • 吉林
  • 辽宁
  • 西藏
  • 新疆
  • 内蒙古
  • 海南
  • 福建
  • 甘肃
  • 港澳台

2015

  • 2015
  • 2014
  • 2013
  • 2012
  • 2011

北京

  • 北京
  • 天津
  • 上海
  • 重庆
  • 河北
  • 河南
  • 山东
  • 山西
  • 安徽
  • 江西
  • 江苏
  • 浙江
  • 湖北
  • 湖南
  • 广东
  • 广西
  • 云南
  • 贵州
  • 四川
  • 陕西
  • 青海
  • 宁夏
  • 黑龙江
  • 吉林
  • 辽宁
  • 西藏
  • 新疆
  • 内蒙古
  • 海南
  • 福建
  • 甘肃
  • 港澳台

理科

  • 文科
  • 理科

找专家报志愿

一对一服务
咨询电话:
01058983379
推荐阅读
聚焦
关闭评论
高清美图