跳转到路径导航栏
不支持Flash
跳转到正文内容

回顾:2009考研数学大纲数一之高等数学

http://www.sina.com.cn   2009年07月13日 11:23   海天教育

  一、函数、极限、连续

  考试内容

  函数的概念及表示法  函数的有界性、单调性、周期性和奇偶性  复合函数、反函数、分段函数和隐函数 基本初等函数的性质及其图形  初等函数  函数关系的建立

  数列极限与函数极限的定义及其性质 函数的左极限和右极限  无穷小量和无穷大量的概念及其关系  无穷小量的性质及无穷小量的比较  极限的四则运算  极限存在的两个准则:单调有界准则和夹逼准则  两个重要极限:

  函数连续的概念  函数间断点的类型  初等函数的连续性 闭区间上连续函数的性质

  考试要求

  1. 理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系。

  2. 了解函数的有界性、单调性、周期性和奇偶性。

  3. 理解复合函数及分段函数的概念,了解反函数及隐函数的概念。

  4. 掌握基本初等函数的性质及其图形,了解初等函数的概念。

  5. 理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的在关系。

  6。掌握极限的性质及四则运算法则。

  7。掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法。

  8。理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限。

  9。理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。

  10。了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质。

  二、一元函数微分学

  考试内容

  导数和微分的概念  导数的几何意义和物理意义  函数的可导性与连续性之间的关系  平面曲线的切线和法线  导数和微分的四则运算  基本初等函数的导数  复合函数、反函数、隐函数以及参数方程所确定的函数的微分法  高阶导数  一阶微分形式的不变性  微分中值定理  洛必达(L’Hospital)法则 函数单调性的判别  函数的极值  函数图形的凹凸性、拐点及渐近线  函数图形的描绘  函数的最大值与最小值  弧微分 曲率的概念  曲率半径

  考试要求

  1. 理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系。

  2。掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式。了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分。

  3。了解高阶导数的概念,会求简单函数的高阶导数。

  4。会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数。

  5. 理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理。

  6。掌握用洛必达法则求未定式极限的方法。

  7。理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用。

  8。会用导数判断函数图形凹凸性(注:在区间内,设具有二阶导数。当时,的图形是凹的;当时,的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形。

  9。了解曲率、曲率圆与曲率半径的概念,会计算曲率和曲率半径。

  三、一元函数积分学

  考试内容

  原函数和不定积分的概念  不定积分的基本性质  基本积分公式  定积分的概念和基本性质  定积分中值定理  积分上限的函数及其导数  牛顿-莱布尼茨(Newton-Leibniz)公式 不定积分和定积分的换元积分法与分部积分法  有理函数、三角函数的有理式和简单无理函数的积分  反常(广义)积分  定积分的应用

  考试要求

  1。理解原函数的概念,理解不定积分和定积分的概念。

  2。掌握不定积分的基本公式,掌握不定积分和定积分的性质及积分中值定理,掌握换元积分法与分部积分法。

  3。会求有理函数、三角函数的有理式和简单无理函数的积分。

  4。理解积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式。

  5。了解反常积分的概念,会计算反常积分。

  6。掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心等)及函数的平均值。

  四、向量代数和空间解析几何

  考试内容

  向量的概念  向量的线性运算  向量的数量积和向量积 向量的混合积 两向量垂直、平行的条件  两向量的夹角  向量的坐标表达式及其运算  单位向量  方向数与方向余弦  曲面方程和空间曲线方程的概念  平面方程、直线方程  平面与平面、平面与直线、直线与直线的夹角以及平行、垂直的条件 点到平面和点到直线的距离  球面  柱面  旋转曲面  常用的二次曲面方程及其图形  空间曲线的参数方程和一般方程  空间曲线在坐标面上的投影曲线方程。

上一页 1 2 下一页

    更多信息请访问:新浪考研频道 考研论坛 考研博客圈

  特别说明:由于各方面情况的不断调整与变化,新浪网所提供的所有考试信息仅供参考,敬请考生以权威部门公布的正式信息为准。

网友评论

登录名: 密码:
Powered By Google

更多关于 考研 数学 的新闻

新浪简介About Sina广告服务联系我们招聘信息网站律师SINA English会员注册产品答疑┊Copyright © 1996-2009 SINA Corporation, All Rights Reserved

新浪公司 版权所有