三、九年国考幂数列真题详解:
1. C。通过分析得知:1是1的4次方,8是2的3次方,9是3的2次方,4是4的1次方,由此推知,空缺项应为5的0次方即1,且6的-1次方为1/6,符合推理。
2. D。此题是立方数列的变式,其中:0等于1的3次方减1,9等于2的3次方加1,26等于3的3次方减1,65等于4的3次方加1,124等于5的3次方减1,由此可以推知下一项应:6的3次方加1,即217。
3. C。数列各项依次是:1的1次方,2的2次方,3的3次方,(4的4次方),5的5次方。
4. B。该数列后一项减去前一项,可得一新数列:1,4,9,16,(25);新数列是一个平方数列,新数列各项依次是:1的2次方,2的2次方,3的2次方,4的2次方,5的2次方;还原之后()里就是:25+31=56。
5. A。这是一道幂数列。数列各项依次可写为:1的2次方,2的2次方,4的2次方,7的2次方,11的2次方;其中新数列1,2,4,7,11是一个二级等差数列,可以推知()里应为16的2次方,即256。
6. C。这是一道平方数列的变式。数列各项依次是:1的2次方加1,2的2次方减1,3的2次方加1,4的2次方减1,5的2次方加1,因此()里应为:6的2次方减1,即35。
7. C。这是一道立方数列的变式。数列各项依次是:1的3次方加0,2的3次方加2,3的3次方加4,4的3次方加6,5的3次方加8,因此()里应为:6的3次方加10,即226。
8. A。这是一道幂数列题目。该题数列从第二项开始,每项自身的平方减去前一项的差等于,下一项,即3=2的平方-1,7=3的平方-2,46=7的平方-3,因此()里应为:46的平方-7,即2109。
9. B。这是一道幂数列题目。原数列各项依次可化为:3的3次方,4的2次方,5的1次方,(6的0次方),7的-1次方,因此()里应为1。
10. B。本题规律为:前一项的立方减1等于后一项,所以()里应为:-2的3次方减1,即-9。
11. B。这是一道幂数列题目。原数列各项依次可化为:1的6次方,2的5次方,3的4次方,4的3次方,5的2次方,(6的1次方),7的0次方,因此()里应为6。
12. D。数列各项依次可化成:-2×(1的3次方),-1×(2的3次方),0×(3的3次方),1×(4的3次方),因此()里应为:2×(5的3次方),即250。
13. B。本题规律为:[3的平方+(2×2)]=13,[13的平方+(2×3)]=175,因此()里应为:175的平方+(2×13),即30651。
14——16(同11——13)
17. D。本题规律为:(第二项-第一项)的平方=第三项,所以()里应为:(1-9)的平方,即64。
18. C。此题是立方数列的变式,其中:0等于1的3次方减1,9等于2的3次方加1,26等于3的3次方减1,65等于4的3次方加1,124等于5的3次方减1,由此可以推知下一项应:6的3次方加1,即217。
19. A。数列各项依次可化成:0的3次方加0,1的3次方加1,2的3次方加2,3的3次方加3,所以()里应为:4的3次方加4,即68。
20. D。这是一道幂数列变形题。题干中数列的每两项之和是:121,100,81,64,49,分别是:11、10、9、8、7的平方。所以()里就是7的平方-29,即20。
21. C。这是一道幂数列的变形题。题干中数列各项分别是:3的平方加5,5的平方减5,7的平方加5,9的平方减5,所以()里就是11的平方加5,即126。
特别说明:由于各方面情况的不断调整与变化,新浪网所提供的所有考试信息仅供参考,敬请考生以权威部门公布的正式信息为准。