2015北京公务员行测:特值法巧解工程问题

2014年12月11日14:35  中公教育     收藏本文     

  工程问题一直是公务员[微博]考试中出现频率较高的一类题型,工程问题对于考生来说并不陌生,在初中甚至小学时候就接触到了工程问题,但是仍有很大一部分考生面对工程问题仍束手无策,无所适从。中公教育[微博]专家指出,解决工程问题最常用的方法就是特值法。

  一、从工作时间入手,把工作总量设为“时间”的最小公倍数

  例:一项工程,甲一人做完需30天,甲、乙合作完成需18天,乙、丙合作完成需 15天。甲、乙、丙三人共同完成该工程需多少天?

  A.8天      B.9天       C.10天      D.12天

  中公解析:C。设工作总量=90,则甲的效率为3,甲、乙效率之和为5,乙、丙效率之和为6,可求乙效率2,丙效率为4,甲、乙、丙合作的天数为90÷9=10。

  二、从工作效率入手,先找出“效率”的最简比例,将效率设为特值

  例:一项工程由甲、乙、丙三个工程队共同完成需要15天,甲队与乙队的工作效率相同,丙队3天的工作量与乙队4天的工作量相当。三队同时开工2天后,丙队被调往另一工地,甲乙两队留下继续工作。那么,开工22天后,这项工程:

  A。已经完工                             B。余下的量需甲乙两队共同工作1天

  C。余下的量需乙丙两队共同工作1天       D。余下的量需甲乙丙三队共同工作1天

  中公解析:D。由于丙队3天的工作量与乙队4天的工作量相当,不妨假设丙队每天的工作量为4,乙队每天的工作量为3,则甲队每天的工作量为3。这项工程总的工作量为(4+3+3)×15=150,则工作22天后,工程还剩下150-(4+3+3)×2-(3+3)×(22-2)=10 的工作量,正好让甲、乙、丙三队共同工作1天。

  三、题干若涉及很多人完成一项工作,可将每人每天的工作效率设为1,根据效率求工作总量

  例:修一条公路,假设每人每天的工作效率相同,计划180名工人一年完成,工作4个月后,因特殊情况,要求提前两个月完成任务,则需要增加多少名工人?

  A.50              B.65            C.70             D.60

  中公解析:D。此题涉及很多人一起工作,所以设每人每天工作效率为1,则工作总量为180×12=2160,工作4个月后完成了180×4=720,还剩2160-720=1440份总量,要求提前两个月,则需要10个月完成,由于已经工作了4个月,所以剩下的工作要6个月完成,需要的效率应该是1440÷6=240,所以需要增加240—180=60个人。

  很多考生在解题时常将工作总量设为1,但是算到最后会发现计算起来比较麻烦。中公教育专家建议大家以后在做工程问题的时候尽量避开设1这种方式,进而达到方便计算快速解题的目的。

  特别说明:由于各方面情况的不断调整与变化,新浪网所提供的所有考试信息仅供参考,敬请考生以权威部门公布的正式信息为准。

文章关键词: 行测

分享到:
收藏  |  保存  |  打印  |  关闭

已收藏!

您可通过新浪首页(www.sina.com.cn)顶部 “我的收藏”, 查看所有收藏过的文章。

知道了

0
收藏成功 查看我的收藏

高考院校库

(共有2484所高校高招分数线信息) 高校联系方式 录取规则 热门排行
院校搜索:
高校分数线:
批次控制线:
估分择校:
专业分数线:
猜你喜欢

看过本文的人还看过