2013年4月20日托福阅读考题解析:第一篇

2013年04月22日15:20  新东方 微博   

    解析

  第一篇

  行星的形成

  有一篇讲行星怎样形成的,建议大家看看相关内容,满难的。阅读只记得一个讲行星的文章介绍几个行星:木星、土星??说很大一部分的比例都是水和冰

  版本二

  太阳系的形成

  1 原材料:成分:大部分为helium和XXX,小部分为常见的固态和气态分子

  2 形成过程:某爆发形成碰撞,导致了引力和rotation。关于rotation,用ice-skater打比方

  3 类地行星:成为主要为固态。

  4 远日行星:重力能产生热能,导致温度上升。随着太阳形成,形成过程停止(大意),温度下降,冰得以存在,所以密度小。而体积大导致引力强,可吸引更轻的气态分子。

  第二篇

  这篇讲贸易的。貌似中世纪欧洲吧,商人为生存都结成团伙。统一团伙内的产品质量,培养学徒。但是它的主要目的呢(有题),还是抵制非团伙成员非竞争,因此也必须与政府有关系。非团伙成员也有优势的,产品价格低(有题),而且可以雇佣农工,很宜啦!最后一段,但是这种团伙内部的公平呢,其实只是表面上的(有题),能力啊,雄心啊,都会导致团伙成员中一部分有钱,一部分没钱,有钱的就扩张,没钱的就抗议要公平啊!(排序题)

  欧洲中世纪议会制Guild

  先讲大师傅 master 的出道过程。然后是整个?会的排他性。接着是议会和城邦政府怎么样由前提相互支持(?断),到后政府看中断的大面包,于是插手进分一杯羹。除政府以外,议会的另一个强劲对手是城外受法约束而且拥有价动(农民工)的个体企业。后来议会竞争。成本拼不过,价格当然也拼不过,同时又遇到一些供应上的困难,所以结果。。。还有,他们自己本身也有矛盾,主要是 master 们有些很有野心,想要扩张。所以简单?就是内忧外患。

  版本二:

  中世纪行会

  1 目的:主要---经济稳定性和排他性;次要---将门徒训练为大师,高质量,统一标准的商品。

  2 问题:内忧外患:内---master数量太多,外---其他城市的商人竞争。其竞争力来自更低的价格和利用乡村廉价劳动力。同时政府难以管理城市外的竞争者。

  3 影响:独立性和自制性受到威胁。商人行会和手工业者行会(不确定)

  第三篇:贸易的发展

  Bartering 和states的关系

  1 barter建立在复杂的社会和政治机构上(好像提及了一个19C70S的研究发现)

  2 假说一:有R提出,农业和交通等的发展,使得长距离的物物交换成为可能。奢侈品也参与到这样的交换中来。同时需要世俗君主的介入。

  反驳:XXX在那个时候还没出现。

  3 假说二:由另一个R提出,以maya为例(不确定)。他们缺少某些重要资源,所以必须和周边环境交换。而且他们的communities都面对这种问题,所以必须和周边的其他地区进行交换。一旦这种交换成为常态,就需要政府的规范。

  反驳:可能是其他原因导致了政府的行为

  4 结论:商业或经济因素不可能是states形成的唯一原因。很多因素影响着政治。甚至机经本身就是某种政治条件下的结果,而非原因。

  扩展阅读:

  TOPIC Formation of Planets[ http://en.wikipedia.org/wiki/Formation_and_evolution_of_the_Solar_System]

  The various planets are thought to have formed from the solar nebula, the disc-shaped cloud of gas and dust left over from the Sun's formation.[ Douglas N. C. Lin (May 2008). "The Genesis of Planets". Scientific American 298 (5): 50-59.] The currently accepted method by which the planets formed is known as accretion, in which the planets began as dust grains in orbit around the central protostar. Through direct contact, these grains formed into clumps up to 200 metres in diameter, which in turn collided to form larger bodies (planetesimals) of ~10 kilometres (km) in size. These gradually increased through further collisions, growing at the rate of centimetres per year over the course of the next few million years。

  The inner Solar System, the region of the Solar System inside 4 AU, was too warm for volatile molecules like water and methane to condense, so the planetesimals that formed there could only form from compounds with high melting points, such as metals (like iron, nickel, and aluminium) and rocky silicates. These rocky bodies would become the terrestrial planets (Mercury, Venus, Earth, and Mars). These compounds are quite rare in the universe, comprising only 0.6% of the mass of the nebula, so the terrestrial planets could not grow very large. The terrestrial embryos grew to about 0.05 Earth masses and ceased accumulating matter about 100,000 years after the formation of the Sun; subsequent collisions and mergers between these planet-sized bodies allowed terrestrial planets to grow to their present sizes。

  When the terrestrial planets were forming, they remained immersed in a disk of gas and dust. The gas was partially supported by pressure and so did not orbit the Sun as rapidly as the planets. The resulting drag caused a transfer of angular momentum, and as a result the planets gradually migrated to new orbits. Models show that temperature variations in the disk governed this rate of migration, but the net trend was for the inner planets to migrate inward as the disk dissipated, leaving the planets in their current orbits.[ Staff. "How Earth Survived Birth". Astrobiology Magazine. Retrieved 2010-02-04.]

  The gas giants (Jupiter, Saturn, Uranus, and Neptune) formed further out, beyond the frost line, the point between the orbits of Mars and Jupiter where the material is cool enough for volatile icy compounds to remain solid. The ices that formed the Jovian planets were more abundant than the metals and silicates that formed the terrestrial planets, allowing the Jovian planets to grow massive enough to capture hydrogen and helium, the lightest and most abundant elements.[ Ann Zabludoff (University of Arizona) (Spring 2003). "Lecture 13: The Nebular Theory of the origin of the Solar System". Retrieved 2006-12-27.] Planetesimals beyond the frost line accumulated up to four Earth masses within about 3 million years. Today, the four gas giants comprise just under 99% of all the mass orbiting the Sun. Theorists believe it is no accident that Jupiter lies just beyond the frost line. Because the frost line accumulated large amounts of water via evaporation from infalling icy material, it created a region of lower pressure that increased the speed of orbiting dust particles and halted their motion toward the Sun. In effect, the frost line acted as a barrier that caused material to accumulate rapidly at ~5 AU from the Sun. This excess material coalesced into a large embryo of about 10 Earth masses, which then began to grow rapidly by swallowing hydrogen from the surrounding disc, reaching 150 Earth masses in only another 1000 years and finally topping out at 318 Earth masses. Saturn may owe its substantially lower mass simply to having formed a few million years after Jupiter, when there was less gas available to consume。

上一页12345下一页

分享到:

  特别说明:由于各方面情况的不断调整与变化,新浪网所提供的所有考试信息仅供参考,敬请考生以权威部门公布的正式信息为准。

意见反馈 电话:010-62675178保存  |  打印  |  关闭

高考院校库

(共有2462所高校高招分数线信息)
院校搜索:
高校分数线:
批次控制线:
估分择校:
试题查询:
猜你喜欢

看过本文的人还看过