北京四中网校:中考数学热点分析--探索型问题 |
---|
http://www.sina.com.cn 2004/12/17 13:21 北京四中网校 |
例3.如图,已知ΔABC是等腰直角三角形,∠C=90° (1)操作并观察,如图,将三角板的45°角的顶点与点C重合,使这个角落在∠ACB的内部,两边分别与斜边AB交于E、F两点,然后将这个角绕着点C在∠ACB的内部旋转,观察在点E、F的位置发生变化时,AE、EF、FB中最长线段是否始终是EF? 写出观察结果。 (2)探索:AE、EF、FB这三条线段能否组成以EF为斜边的直角三角形(即能否有EF2=AE2+BF2)?如果能,试加以证明。 分析:操作、观察不是重点,探索、猜测才是整个题目的重点,是难点,也就是说,从操作中获取信息是探索问题的过程中最重要的。 解:(1)观察结果是:当45°角的顶点与点C重合,并将这个角绕着点C在重合,并将这个角绕着点C在ÐACB内部旋转时,AE、EF、FB中最长的线段始终是EF。 (2)AE、EF、FB三条线段能构成以EF为斜边的直角三角形,证明如下: 例4.(北京朝阳区,最后一题)如图,一个圆形街心花园,有三个出口A,B,C,每两个出口之间有一条60米长的道路,组成正三角形ABC,在中心点O处有一亭子,为使亭子与原有的道路相通,需再修三条小路OD,OE,OF,使另一出口D、E、F分别落在ΔABC分成三个全等的多边形,以备种植不同品种的花草。 (1)请你按以上要求设计两种不同的方案,将你的设计方案分别画在图1,图2中,并附简单说明。 例5.某房地产公司要在一块地(图中矩形ABCD)上规划建造一个小区公园(矩形GHCK),为了使文物保护区ΔAEF不被破坏,矩形公园的顶点G不能在文物保护区内,已知AB=200m, AD=160m, AE=60m, AF=40m。 (1)求矩形小区公园的顶点G恰是EF的中点时,公园的面积。 分析:第一问比较容易,求出矩形GHCK的长和宽,注意利用ΔAEF的条件。 说明:对于探索某一个量最大、最小的问题,利用函数思想是首选的方法,可以设置适当的变量,所求的量用它来表示,从而用函数的最大最小来求。 |