跳转到路径导航栏
不支持Flash
跳转到正文内容

初三数学通关假期学习三秘诀之二

http://www.sina.com.cn   2009年01月09日 14:44   新闻晚报

  秘诀2

  掌握数学思想与方法

  数学思想方法在数学学习中具有举足轻重的地位和作用,具体表现在:一是提供简洁精确的形式化语言;二是提供数量分析及计算的方法;三是提供逻辑推理的工具。因而它具有应用的普遍性和可操作性。正因为如此,数学学习的目的不仅仅在于为后继学习准备必要的数学知识问题,更重要的是培养学生的数学意识,发展学生的数学思想。纵观近几年初三数学各类考试试题,我们可以看到:对数学思想方法的思考、提炼与总结,在数学解题中自觉应用乃至成为一种思维习惯,已成为提高数学修养的基本形式。掌握数学思想方法可以使数学更容易理解和记忆,更重要的是领会数学思想方法是通向迁移大道的 “光明之路”。如果把数学思想方法学好了,在数学思想方法的指导下运用数学方法驾驭数学知识,就能提高数学能力,数学学习就较容易了。

  数学思想、数学方法是数学智能发展的重要成分。但目前这一问题还没有引起考生的足够的重视。其原因有:(1)目前的数学教材仅是知识的呈现,对蕴含在知识中的数学思想、数学方法没有予以概括与提炼;(2)在复习中常常不能恰如其分地运用数学思想、方法解题,致使一些学生教师讲过的习题会做,没讲过的习题不会做;套题会做,质同形不同的题不会做;模仿的题目会做,独立思考的题目不会做。数学思想是对数学规律的理性认识,具有本质性、概括性和指导性的意义,可谓数学“灵魂”。数学方法是获取数学知识的途径、手段和方式的总和,没有数学方法就不可能有获取数学知识的正确行为。

  考试中常用的数学思想和方法有:整体思想、转化思想、分类讨论思想、函数思想、对应思想、方程思想、数形结合思想、类比思想,换元法、待定系数法、消元法、降次法、配方法、面积法、分析法、综合法等。考生要常进行数学基本思想、数学基本方法的总结和提炼,在解题后进行分析和归纳,反思和提炼,从中探寻规律,收到举一反三的效果。

  化归思想:就是把未知问题化归为已知问题,把复杂问题化归为简单问题,把非常规问题化归为常规问题,从而使很多问题得到解决的思想。结合解题进行化归思想方法的训练的做法有:(1)化繁为简;(2)化高维为低维;(3)化抽像为具体;(4)化非规范性问题为规范性问题;(5)化数为形;(6)化形为数;(7)化实际问题为数学问题;(8)化综合为单一;(9)化一般为特殊等。

  数形结合的思想:能运用代数、三角比知识通过数量关系的讨论去处理几何图形的问题;能运用几何、三角比知识通过对图形性质的研究去解决数量关系的问题。能将抽象的数学语言与直观的图形符号结合起来,把抽象思维与形象思维结合起来;会用代数的方法去研究几何问题,会根据图形的性质及几何知识去处理代数问题。

  分类讨论的思想:当面临的问题不宜用一种方法处理或同一种形式叙述时,就把问题按照一定的原则或标准分为若干类,然后逐类进行讨论,再把这几类的结论汇总,得出问题的答案,这种解决问题的思想方法就是分类讨论的思想方法。分类讨论的思想方法的实质是把问题“分而治之,各个击破”,其一般规则及步骤是:(1)确定同一分类标准;(2)恰当地对全体对像进行分类,按照标准对分类做到“既不重复又不遗漏”;(3)逐类讨论,按一定的层次讨论,逐级进行;(4)综合概括小节,归纳得出结论。

  方程的思想:方程思想是一种重要的数学思想。学会从分析问题的数量关系入手,将问题中的已知量和未知量之间的数量关系通过适当设元,建立起方程(组),然后通过解方程(组)使问题得到解决的思维方式。用方程思想解题的关键是利用已知条件或公式、定理中的已知结论构造方程(组)。这种思想在代数、几何及生活实际中有着广泛的应用。

  函数的思想:函数所揭示的是两个变量之间的对应关系,通俗的讲就是一个量的变化引起了另一个量的变化。在数学中总是设法将这种对应关系用解析式、图像和表格表示出来,这样就能充分运用函数的知识、方法来解决有关的问题。

    更多信息请访问:新浪中考频道 中考论坛 中考博客圈

  特别说明:由于各方面情况的不断调整与变化,新浪网所提供的所有考试信息仅供参考,敬请考生以权威部门公布的正式信息为准。

Powered By Google

更多关于 中考 数学 的新闻

·改革30年30城市变与迁 ·新浪《对话城市》 ·诚招合作伙伴 ·新企邮上线更优惠

新浪简介About Sina广告服务联系我们招聘信息网站律师SINA English会员注册产品答疑┊Copyright © 1996-2009 SINA Corporation, All Rights Reserved

新浪公司 版权所有