不支持Flash
|
三、立体几何初步
(一)空间几何体
1.了解和正方体、球有关的简单组合体的结构特征,理解柱、锥、台、球的结构特征。
2.能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述的三视图所表示的立体模型,会用斜二测法画出它们的直观图。
3.会用平行投影与中心投影两种方法,画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式。
4.能识别三视图所表示的空间几何体;理解三视图和直观图的联系,并能进行转化。
5.了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式)。
(二)点、直线、平面之间的位置关系
1.理解空间直线、平面位置关系的定义,并了解如下可以作为推理依据的公理和定理。
◆公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点在此平面内。
◆公理2:过不在同一条直线上的三点,有且只有一个平面。
◆公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。
◆公理4:平行于同一条直线的两条直线互相平行。
◆定理:空间中如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补。
2.以立体几何的上述定义、公理和定理为出发点,认识和理解空间中线面平行、垂直的有关性质与判定。
理解以下判定定理。
◆如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行。
◆如果一个平面内的两条相交直线与另一个平面都平行,那么这两个平面平行。
◆如果一条直线与一个平面内的两条相交直线都垂直,那么该直线与此平面垂直。
◆如果一个平面经过另一个平面的垂线,那么这两个平面互相垂直。
理解以下性质定理,并能够证明。
◆如果一条直线与一个平面平行,经过该直线的任一个平面与此平面相交,那么这条直线就和交线平行。
◆如果两个平行平面同时和第三个平面相交,那么它们的交线相互平行。
◆垂直于同一个平面的两条直线平行。
◆如果两个平面垂直,那么一个平面内垂直于它们交线的直线与另一个平面垂直。
3.能运用公理、定理和已获得的结论证明一些空间位置关系的简单命题。
四、平面解析几何初步
(一)直线与方程
1.在平面直角坐标系中,结合具体图形,确定直线位置的几何要素。
2.理解直线的倾斜角和斜率的概念及相互间的关系,掌握过两点的直线斜率的计算公式。
3.能根据两条直线的斜率判定这两条直线平行或垂直。
4.掌握确定直线位置的几何要素,掌握直线方程的几种形式(点斜式、两点式及一般式),了解斜截式与一次函数的关系。
5.能用解方程组的方法求两直线的交点坐标。
6.掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离。
(二)圆与方程
1.掌握确定圆的几何要素,掌握圆的标准方程与一般方程。
2.能根据给定直线、圆的方程,判断直线与圆的位置关系;能根据给定两个圆的方程,判断两圆的位置关系。
3.能用直线和圆的方程解决一些简单的问题。
4.初步了解用代数方法处理几何问题的思想。
(三)空间直角坐标系
1.了解空间直角坐标系,会用空间直角坐标表示点的位置。
2.了解空间两点间的距离公式。
更多高考信息请访问:新浪高考频道 高考论坛 高考博客圈 高考贴吧
特别说明:由于各方面情况的不断调整与变化,新浪网所提供的所有考试信息仅供参考,敬请考生以权威部门公布的正式信息为准。