不支持Flash
|
Ⅲ.考试内容
一、集合
(一)集合的含义与表示
1.了解集合的含义、元素与集合的“属于”关系。
2. 能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题。
(二)集合间的基本关系
1.理解集合之间包含与相等的含义,能识别给定集合的子集。
2.在具体情境中,了解全集与空集的含义。
(三)集合的基本运算
1.理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集。
2. 理解在给定集合中一个子集的补集的含义,会求给定子集的补集。
3.能使用韦恩图(Venn)表达集合的关系及运算。
二、函数概念与基本初等函数Ⅰ(指数函数、对数函数、幂函数)
(一)函数
1.了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念。
2.理解函数的三种表示法:解析法、图象法和列表法,能根据不同的要求选择恰当的方法表示简单的函数。
3.了解分段函数,能用分段函数来解决一些简单的数学问题。
4.理解函数的单调性,会讨论和证明一些简单的函数的单调性;理解函数奇偶性的含义,会判断简单的函数奇偶性。
5.理解函数的最大(小)值及其几何意义,并能求出一些简单的函数的最大(小)值。
6.会运用函数图像理解和研究函数的性质。
(二)指数函数
1.了解指数函数模型的实际背景。
2. 理解有理指数幂的含义,了解实数指数幂的意义,掌握幂的运算。
3.理解指数函数的概念,会求与指数函数性质有关的问题。
4.知道指数函数是一类重要的函数模型。
(三)对数函数
1. 理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用。
2. 理解对数函数的概念;会求与对数函数性质有关的问题。。
3.知道对数函数是一类重要的函数模型;
4.了解指数函数 与对数函数 互为反函数( )。
(四)幂函数
1.了解幂函数的概念。
2.结合函数 的图像,了解它们的变化情况。
(五)函数与方程
1.了解函数零点的概念,结合二次函数的图像,了解函数的零点与方程根的联系。
2.理解并掌握连续函数在某个区间上存在零点的判定方法;能利用函数的图象和性质判别函数零点的个数。
(六)函数模型及其应用
1.了解指数函数、对数函数以及幂函数的增长特征。知道直线上升、指数增长、对数增长等不同函数类型增长的含义。
2.了解函数模型(如指数函数、对数函数、幂函数、分段函数等在社会生活中普遍使用的函数模型)的广泛应用。
3.能利用给定的函数模型解决简单的实际问题。
更多高考信息请访问:新浪高考频道 高考论坛 高考博客圈 高考贴吧
特别说明:由于各方面情况的不断调整与变化,新浪网所提供的所有考试信息仅供参考,敬请考生以权威部门公布的正式信息为准。