1.100人参加7项活动,已知每个人只参加一项活动,而且每项活动参加的人数都不一样。那么,参加人数第四多的活动最多有几人参加?
A.22 B.21 C.24 D.23
2.如图所示,长方形ABCD的两条边长分别为8m和6m,四边形OEFG的面积是4m2,则阴影部分的面积为?
A.32 m2 B.28 m2 C.24 m2 D.20 m2
3.某高校对一些学生进行问卷调查。在接受调查的学生中,准备参加注册会计师考试的有63人,准备参加英语六级考试的有89人,准备参加计算机考试的有47人,三种考试都准备参加的有24人,准备选择两种考试参加的有46人,不参加其中任何一种考试的有15人。问接受调查的学生共有多少人?
A.120 B.144
C.177 D.192
|
4.如图所示,X、Y、Z分别是面积为64、180、160的三张不同形状的纸片。它们部分重叠放在一起盖在桌面上,总共盖住的面积为290。且X与Y、Y与Z、Z与X重叠部分面积分别为24、70、36。问阴影部分的面积是多少?
A.15 B.16
C.14 D.18
5.三位专家为10幅作品投票,每位专家分别都投出了5票,并且每幅作品都有专家投票。如果三位专家都投票的作品列为A等,两位专家投票的列为B等,仅有一位专家投票的作品列为C等,则下列说法正确的是( )。
A.A等和B等共6幅 B.B等和C等共7幅
C.A等最多有5幅 D.A等比C等少5幅
6.将104张桌子分别放到14个办公室,每个人办公室至少放一张桌子,不管怎样分至少有几个办公室的桌子数是一样多?
A.2 B.3 C.7 D。无法确定
7.从1,2,3,…,49,50这50个数中取出若干个数,使其中任意两个数的和都不能被7整除,则最多能取出多少个数?
A.23 B.24 C.25 D.26
8.10个足球队之间共赛了11场,赛得最多的球队至少赛了几场?
A.3 B.4 C.6 D.5
9.某学校1999名学生去游故宫、景山和北海三地,规定每人至少去一处,至多去两地游览,那么至少有多少人游的地方相同?
A.35 B.186 C.247 D.334
10.将104张桌子分别放到14个办公室,每个人办公室至少放一张桌子,不管怎样分至少有几个办公室的桌子数是一样多?
A.2 B.3 C.7 D。无法确定
参考答案:
1.【答案】A。中公解析:按不同活动把100人分为7个互斥集合。按参加人数从少到多设为x1,x2,x3,x4,x5,x6,x7。
欲令参加人数第四多的活动(x4)人数最多,根据“此消彼长”的原则,参加人数最少的三个活动(x1,x2,x3)的人数应该最少,为1、2、3。参加人数最多的三个活动(x5,x6,x7)人数应尽量少,即x4,x5,x6,x7为公差为1的等差数列。
x4+x5+x6+x7=100-1-2-3=94。平均数为94÷4=23.5,利用等差数列知识,易求出x4=22。
2.【答案】B。中公解析:矩形ABCD的面积为8×6=48m2,阴影部分面积等于ABCD面积-空白部分面积。三角形BDF面积对应为X,三角形AFC面积对应为Y,则空白部分面积对应为X∪Y,四边形OEFG面积对应为X∩Y。
选择容斥原理1,X∪Y=X+Y-X∩Y;所求为48-X∪Y。
6.【答案】A。中公解析:求至少有几个办公室桌子数一样,即求有几个抽屉中物品一样多。可从任意的办公室桌子不同构造抽屉。
若要让办公室中桌子数不同,可以每个办公室分别为1、2、3、4、…、13、14张,那么14个房间需要(1+14)×14÷2=105张,因此只能有一个办公室中桌子数减少105-104=1张,故最少有2个办公室的桌子数是一样的。
7.【答案】A。中公解析:考查利用数的性质构造抽屉。
将1,2,3,…,49,50这50个数,按除以7的余数分为7个抽屉:余数为0,1,2,3,4,5,6,其所含的数的个数分别为7,8,7,7,7,7,7。
被7除余1与余6的两个数之和是7的倍数,所以取出的数只能是这两种之一;
同理,被7除余2与余5的两个数之和是7的倍数,所以取出的数只能是这两种之一;被7除余3与余4的两个数之和是7的倍数,所以取出的数只能是这两种之一;
两个数都是7的倍数,它们的和也是7的倍数,所以7的倍数中只能取1个。
因此最多可以取出8+7+7+1=23个
8.【答案】A。中公解析:求同一抽屉中最多的物品数,利用抽屉原理解题。
因为每场球赛有2个球队参加,所以11场球赛共有11×2=22队次参加,把10个足球队看成10个抽屉,由于22÷10=2……2(n=10,m=2),根据抽屉原理2,赛得最多的球队至少赛了2+1=3场比赛。
10.【答案】A。中公解析:求至少有几个办公室桌子数一样,即求有几个抽屉中物品一样多。可从任意的办公室桌子不同构造抽屉。
若要让办公室中桌子数不同,可以每个办公室分别为1、2、3、4、…、13、14张,那么14个房间需要(1+14)×14÷2=105张,因此只能有一个办公室中桌子数减少105-104=1张,故最少有2个办公室的桌子数是一样的。